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ABSTRACT
In this paper, a system for content-based image retrieval from
video databases is introduced, using B-splines for affine
invariant object representation. A small number of “key-
frames” is extracted from each video sequence, which
provide sufficient information about the video content. Color
and motion segmentation and tracking is then employed for
automatic extraction of video objects. A B-spline
representation of the object contours is then obtained, which
possesses important properties, such as smoothness,
continuity and invariance under affine transformation. A
neural network approach is used for supervised classification
of video objects into prototype object classes. Finally, higher
level classes can be constructed combining primary classes,
providing the ability to obtain a high level of abstraction in
the representation of each video sequence.

1. INTRODUCTION
Due to recent growth in interest in multimedia applications,
an increasing demand has emerged for efficient storage,
management and browsing in multimedia databases. The
latter has been given considerable attention after the recent
guidelines of the Moving Pictures Expert Group regarding
the MPEG-4 and MPEG-7 standards. Content-based query,
retrieval and indexing capabilities are of paramount
importance in browsing digital video databases, due to the
vast amount of information involved.
Some prototype systems which provide such capabilities,
including Photobook, Virage, VisualSEEk and QBIC have
already been developed and are now in the stage of
validation. These systems enable searching through on-line
image databases and still image retrieval through a web
interface using color, texture and shape attributes. Moreover,
several works have been proposed in recent literature for the
extension of the aforementioned schemes to video databases.
These include video object modeling and segmentation [1],
semantically meaningful feature spaces [2], and optimal
extraction of frames and scenes [3]. Some prototype systems
have also been proposed, giving the ability of querying-by-
sketch in image databases, using image curvelet feature
extraction and matching [4] and B-splines [5].
Based on the above work, a new system is introduced in this
paper, extending the use of B-spline object contour
representation to video queries and allowing video object
matching and classification based on object shape apart from
other features (such as color, texture, motion etc.).
Furthermore the object representation obtained in this paper

can be generalised in order to achieve video content
description with a high level of abstraction.
The proposed system consists of several blocks. Initially,
each video sequence of the video database is partitioned into
video shots. An unsupervised color and motion segmentation
technique is then applied to all frames of each video shot, and
segment characteristics are used to construct a feature vector
for each frame. Using an optimization method for locating a
set of minimally correlated feature vectors, a small number of
key frames and shots is selected so that subsequent
processing is constrained to only a subset of the original
sequence. All of the above procedures are described in detail
in [3].
Object contours are obtained from image segments and a B-
spline representation is used to model the resulting curves. A
neural network approach is used for supervised classification
of video objects into prototype object classes, which are used
for the construction of an object class database. The
classification scheme includes user interaction with the
database, in order to perform queries and potentially update
the stored prototypes. The above mentioned modules are
further described in the sequel.

2. B-SPLINE REPRESENTATION
Using the object contours obtained through segmentation of
the key-frames, a curve modeling scheme should be applied
in order to facilitate recognizing and matching object shapes.
A number of different approaches have been proposed for
this purpose such as B-splines, Fourier descriptors, chain
codes etc. In this work B-splines are employed since they
possess a number of properties which make them suitable for
shape representation and analysis such as smoothness and
continuity, built-in boundedness, local controlability and
shape invariance under affine transformation. In addition
Fourier descriptors and curve moments are utilized for quick
curve classification and analytical affine-parameter
estimation respectively, as it will be seen in the sequel.

Curve Modelling. Assume that we are given a dense set of m
data curve points sj, j = 0,..,m-1. The initial goal is to model
the input curve using closed cubic B-splines that consist of
n+1 connected curve segments ri, i = 0,1,..,n. Each of these
segments is a linear combination of four cubic polynomials
in the parameter ]1,0[∈t :
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Using the continuity constraints in position, slope and
curvature on the connection points between segments and the
invariance property to coordinate transformations
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computed and thus the basis functions Qk (t) are defined. The
B-spline used to model the input curve is given using the
curve segments as:
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where 20 −≤′≤ nt  and Ni (t) denote the so-called blending
functions:
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In order to find the appropriate B-spline, the control points
iC  must be determined. The approach followed in this work

tries to find an approximate B-spline such that the error
between the observed data and their corresponding B-spline
curve is minimized. In this sense, the metric
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parametric values of  t'  are allocated on the curve, then the
MMSE solution for the control points is given in matrix form
as fPPPC TT

f
1)( −= , where f and Cf are of size m×2 and

(n+1)×2 respectively containing the given data points sj and
the control points Ci respectively. The m×(n+1) matrix P
contains appropriate values for the blending functions,
estimated on the points r(t'j), as shown in the equation at the
bottom of the page.
For the allocation of parametric values of  t',  the chord
length (CL) method is employed. Specifically, for t'1 = 0 and
t'max = n-2, t'j associated with the sample point sj is estimated
by:

mjttt
m

l
lljjjj ,...,2,

1

2
11max1 =



 −⋅−⋅′+′=′

−

=
−−− ∑ ssss T

he CL is based on the fact that the chord length between any
two points is a very close approximation to the arc length of
the curve and under the assumption of constant speed of a
particle onto the curve. The CL method is robust to
uniformly distributed noise, but suffers from nonuniform
noise and nonuniform sampling. Alternatively, the inverse
chord length method (ICL) could be used for robust results,

as reported in [7].
Curve Matching. In the sequel, the problem of comparing
and matching curves using their B-spline representation is
addressed. Assume that a set of M different curves, i.e. M
sets of samples, are available in the database. After having
modeled these sets of points with M cubic B-splines, it can be
seen that their control points cannot decide shape similarity
between these curves, since generally different sets of control
points may describe the same curve.
For this reason, it is comfortable to derive foreach curve the
so-called knot points pi, i=0,1,...,n, using the estimated
control points. For cubic B-splines, this is achieved as

ff ACp = , where pf is the (n+1)×2 matrix containing the

knot-points and A is the (n+1)×(n+1) circulant matrix with
[2/3,1/6,0,...,0,1/6] as its first row. It must be pointed out here
that the knot-points belong to the derived B-spline.
However, it can be seen that for any two curves, it is not
certain that their estimated knot-points correspond, even if
they are equal in number. For this reason, they must be re-
allocated on each curve [6]. The first knot-point is placed on
the curve point where the curve intersects the x-axis. In the
sequel, we place l knot-points equally spaced w.r.t. t'  onto
each curve. The underlying reason for this method is that for
any input sample curve in the system, their re-allocated knot-
points correspond always.
The classifier based on the re-allocated knot-points is based

on minimizing a metric such as ∑
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where a, b denote the a-th and b-th splines subject to
comparison.
Affine-invariant description and rapid classification. In
the sequel, two problems arise: (a) the comparison and
classification of curves must be invariant to possible affine
transformations and (b) we should indicate a way of rapid
initial classification since it is impossible to compare a
sample curve with all curves existing in the database. Affine-
invariant comparison is addressed in literature using curve
moments and Fourier descriptors. It can be seen that the
former approach is computationally costly but is reported to
be relatively approximate, whereas the latter reduces
computational cost however seems not to be a generic
description for 2D curves.
As we mentioned above, a set of m sample points were used
to describe the contour of an object. For each sample sk,
k=0,...,m-1, the sequence bk=sxk+ jsyk  is obtained, where sxk,
syk denote the x,y coordinates for sk. The discrete Fourier
factors for this sequence are obtained by
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If kb′ is a sequence obtained from bk  by scaling, translation,
rotation and shift, then the discrete Fourier factors are given
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and the normalized Fourier descriptors 1FFii ′′=v ,
i=2,3,...,m-1, are invariant to translation, rotation and starting
point.
As it will be seen in the sequel, the normalized Fourier
descriptors are fed into a neural network (NN). In order to
keep the inputs of the NN reasonably small, we choose to use
only the knot-points instead of all the sample points. Thus v
is an l×1 vector.
Although the normalized Fourier descriptors possess the
aforementioned desirable properties, they seem to be a poor
description for the contour curve of an object. For this
reason, in this work, these descriptors are used only as an
'initial description' for the curve. The input sample curve is
classified to one or more classes w.r.t. to Fourier descriptors,
and then a fine match is performed using all curves belonging
to these classes. This fine match is accomplished using curve
moments [7,8].
In this case, each spline is parametrized in terms of its arc
lengths s as R(s)=[x(s), y(s)] which is a known function of its
control points. The (p,q) order moments are weighted by
kernels wj, so that
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By appropriate choise of the kernels, it can be seen that the
affine parameters L, c aligning two curves, i.e.

crLr +′⋅=′ )()( )()( ba tt , can be estimated from their
moments up to order two [7].

3. NEURAL NETWORK CLASSIFICATION
Along the lines of the previous section, it is possible for a
given set of curve prototypes to determine which one
matches best a given curve indepedently of affine
transformations. At first, using groups of curve prototypes,
we define primary object classes (e.g., airplanes, cars, vases
etc.), which can be further organized in an object class
database. Hence, the problem of classifying a sample curve
to a specific class reduces into locating the best match
between this sample curve and the set of all prototypes. Note,
however, that although the B-spline representation is affine
invariant, it is essential that each class contains several
prototypes depicting different object instances or variations,
different views or even views in different level of detail.
Consequently, a very large amount of curve prototypes
would be used in a practical system, making the procedure of
direct comparison with all available prototypes extremely
time consuming.
For this purpose, a neural network approach is used in order
to constrain the search procedure into a small subset of object
classes. In particular, the representation of curve prototypes
(normalized Fourier descriptors) is used as an input to a
feedforward NN, and a network output is assigned to each
primary object class. The network attempts to implement a
mapping between an input pattern v=[v1,v2,… ,vN]T and a
desired output pattern d=[d1,d2,… ,dC]T. A neural network
with two hidden layers is used, as shown in Figure 1, with N
input neurons, N1 and N2 neurons in the first and second

hidden layer respectively, and C neurons in the output layer.
Neurons of successive layers are interconnected through
weights, so that for each neuron s, the net input is determined
from ∑= i iis wan , where ai is the output of the i-th neuron

of the previous layer, wi the weight connecting this neuron
with neuron s, and the summation is evaluated over all
neurons of the previous layer. The net input is then
transformed by the sigmoid activation function
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where os is the output of neuron s and ? is a gain parameter
[9]. In the training stage, the B-spline representation v(p),
p=1,… ,M of a set of M curve prototypes is fed as input to the
NN, while the desired output d(p), p=1,… ,M is determined by
setting the component of d(p) that corresponds to the curve
prototype class equal to one and all the other components to
zero. The Levenberg-Marquardt method is used for training,
attempting to minimize the sum-squared error
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between the desired and actual output patterns dp and op
respectively. The minimization is performed by updating the
weights connecting neurons of successive layers and re-
evaluating the outputs and the sum-squared error in an
iterative way.

Hidden
LayersInput Output

Class 1

Class C

Class 3
Class 2

V1

VN

V3

V2

Figure 1. Neural network architecture used for object classification.

In the allocation stage, the B-spline representation
v=[v1,v2,… ,vN]T of a test curve is used as input to the NN.
Since one network output corresponds to each object class,
representing the classification result of the input curve into
the respective class, the input curve is typically classified to
the object class that corresponds to the maximum network
output. However, since all the other output components are
not equal to zero (as is the case for the curves of the training
set), misclassification might occur in some cases if the
network outputs are close to each other. For this reason, R
classes are selected for each input curve, corresponding to the
network outputs with the maximum values, where R
corresponds to a small percentage of the total number of
classes, M. This set of classes is then used for the matching
procedure, in order to select the class that provides the best
match. Curve matching in this case is performed between the
input curve and all instances and variations of the prototype
curves of the R selected classes, resulting in a more robust
and reliable classification. Alternatively, when the classes
become very populated, curve matching is performed using a
small number of representatives for each of the R classes.

4. EXPERIMENTAL RESULTS
The aforementioned methodology for image classification
and retrieval has been tested using an MPEG video database
containing video sequences of total duration 4 hours. Each



sequence is partitioned into video shots and feature vectors
are constructed for each frame, containing color and motion
information. A small number of key frames and shots is then
selected used the techniques described in [3] so that
subsequent processing is constrained to a subset of the
original sequences. Object contours are obtained through
color and motion segmentation, as depicted in Figure 2.
Reallocated knot-points are then derived for each curve so
that the correspondence between starting points of different
curves is preserved, as shown in Figure 3. The Fourier
descriptors of the reallocated knot-points are used as input in
the NN.

(a) (b) (c)
Figure 2. Extraction of object contours through segmentation: (a)

initial image, (b) segmentation result, (c) object contour.

0

0

(a) (b)
Figure 3. (a) Reallocated knot-points, (b) Knot-point matching

between two distinct car curves.

Figure 4. Sample prototype curves corresponding to distinct object
classes and used for training.

(a) (b)
Figure 5. Sample input curves. (a) input curve not belonging to the

training set, (b) transformed curve from the training set.

Object Class NN Classification Curve Matching
Cars 10/10 9/10
Airplanes 10/10 10/10
Glasses 9/10 8/9
Spoons 9/10 9/9
Fish 10/10 9/10

Total 48/50 45/48
Table 1. Classification results.

Five object classes are defined for the experiments in this
paper, corresponding to cars, airplanes, glasses, spoons and
fish. A sample prototype curve for each object class is
illustrated in Figure 4, while 10 curves per class are actually
used for training and 10 different curves per class are used

for classification testing. One such sample curve, not
belonging to the training set, is shown in Figure 5(a), while
an affine-transformed prototype curve is shown in Figure
5(b). It should be mentioned that due to the invariance
properties of the Fourier descriptors, curves subjected to any
affine transformation give exactly the same classification
result, hence classification using transformations of the
curves belonging to the training set is 100% successful. After
NN training with the training set consisting of 50 curves,
classification is tested using the 50 curves of the test set. Two
classes (R=2) are derived for each input curve, corresponding
to the NN outputs with the maximum values. Curve matching
using all 10 curve instances for each of the two classes is
then employed in order to select the best matching class. In
particular, 20 metric distances are calculated and the input
curve is assigned the class corresponding to the minimum
distance. The results are shown in Table 1.

5. CONCLUSIONS – FUTURE WORK
A system for content-based image retrieval from image/video
databases based on object contours has been presented in this
paper, using B-splines for affine invariant contour
representation, and a neural network for supervised
classification of objects into prototype object classes. This
technique of locating an initial number of candidate object
classes, and then refining the selection with curve matching
results in a very fast and accurate implementation.
Furthermore, higher level classes can be defined by
combining primary classes, providing the ability to obtain a
high level of abstraction in the representation of each video
sequence. This prospect is currently under investigation.
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